133 research outputs found

    Phase Behavior of Polyelectrolyte Block Copolymers in Mixed Solvents

    Full text link
    We have studied the phase behavior of the poly(n-butyl acrylate)-b-poly(acrylic acid) block copolymer in a mixture of two miscible solvents, water and tetrahydrofuran (THF). The techniques used to examine the different polymers, structures and phases formed in mixed solvents were static and dynamic light scattering, small-angle neutron scattering, nuclear magnetic resonance and fluorescence microscopy. By lowering the water/THF mixing ratio X, the sequence unimers, micron-sized droplets, polymeric micelles was observed. The transition between unimers and the micron-sized droplets occurred at X = 0.75, whereas the microstructuration into core-shell polymeric micelles was effective below X = 0.4. At intermediate mixing ratios, a coexistence between the micron-sized droplets and the polymeric micelles was observed. Combining the different aforementioned techniques, it was concluded that the droplet dispersion resulted from a solvent partitioning that was induced by the hydrophobic blocks. Comparison of poly(n-butyl acrylate) homopolymers and poly(n-butyl acrylate)-b-poly(acrylic acid) block copolymers suggested that the droplets were rich in THF and concentrated in copolymers and that they were stabilized by the hydrophilic poly(acrylic acid) moieties.Comment: 11 pages, 12 figures, to appear in Macromolecule

    Parametric Analysis of an Active Winglet Concept for High Aspect Ratio Wing Using CFD/CSM Computations

    Get PDF
    This paper presents a parametric analysis of an active winglet concept applied to a high aspect ratio wing. The technology studied here only consists in a single degree of freedom wing-tip whose only the cant angle deflection can be controlled. The main parameters under study are the hinge line location and its orientation with respect to the longitudinal axis of the aircraft. High-fidelity aerodynamic and structural computations are used to assess the impact of the device on both drag and loads. The influence of cant angle deflections on flutter characteristics is also evaluated. First a "wing only" configuration is studied and the results are compared with complete aircraft computations to take into account the contributions due to the trim. It is shown that the hinge line parameters highly influence the drag evolution with cant angle but with limited impact on the minimum area - in which we are interested in. Loads are significantly impacted by both cant variations and hinge line geometry. Regarding dynamic characteristics, the mode sequence is dependent on the cant deflection and massively impacts flutter onset

    Polymer-Nanoparticle Complexes : from Dilute Solution to Solid State

    Full text link
    We report on the formation and the structural properties of supermicellar aggregates also called electrostatic complexes, made from mineral nanoparticles and polyelectrolyte-neutral block copolymers in aqueous solutions. The mineral particles put under scrutiny are ultra-fine and positively charged yttrium hydroxyacetate nanoparticles. Combining light, neutron and x-ray scattering experiments, we have characterized the sizes and the aggregation numbers of the organic-inorganic complexes. We have found that the hybrid aggregates have typical sizes in the range 100 nm and exhibit a remarkable colloidal stability with respect to ionic strength and concentration variations. Solid films with thicknesses up to several hundreds of micrometers were cast from solutions, resulting in a bulk polymer matrix in which nanoparticle clusters are dispersed and immobilized. It was found in addition that the structure of the complexes remains practically unchanged during film casting.Comment: 18 pages, 11 figures, 2 table

    Chain transfer kinetics of acid/base switchable n-aryl- n-pyridyl dithiocarbamate RAFT agents in methyl acrylate, n-vinylcarbazole and vinyl acetate polymerization

    Get PDF
    This is an accepted manuscript of an article published by American Chemistry Society in Macromolecules on 14/05/2012, available online: https://doi.org/10.1021/ma300616g ©American Chemical Society. The accepted version of the publication may differ from the final published version.The structures of the "Z" and "R" substituents of a RAFT agent (Z-C(S)S-R) determine a RAFT agent's ability to control radical polymerization. In this paper we report new acid/base switchable N-aryl-N-pyridyl dithiocarbamates (R = -CH 2CN, Z = -N(Py)(Ar)) which vary in substituent at the 4-position of the aryl ring and the use of these to control molecular weight and dispersity. In their protonated form, the new RAFT agents are more effective in controlling polymerization of the more activated monomer, methyl acrylate (MA), whereas in their neutral form they provide more effective control of the polymerization of less activated monomers, N-vinyl carbazole (NVC) and vinyl acetate (VAc). For each polymerization, the apparent chain transfer coefficient (C trapp) shows a good correlation with Hammett parameters. Dithiocarbamates with more electron-withdrawing aryl ring substituents have the higher C trapp. This demonstrates the influence of polar effects on C trapp and supports the hypothesis that the activity of these RAFT agents is determined by the availability of the lone pair of the dithiocarbamate nitrogen.The authors gratefully acknowledge the Capability Development Fund of CSIRO Materials Science and Engineering for financial support.Published versio

    Fifth Drag Prediction Workshop: Computational Fluid Dynamics Studies Carried Out at ONERA

    No full text
    • …
    corecore